Регистр управления
Регистр управления для сопроцессора 8087 показан на следующем рисунке:
15-13 12 11-10 9-8 7 6 5 4 3 2 1 0 ---------T-T-----T-----T---T---T---T---T---T---T---T---¬ ¦XXXXXXXX¦IC¦ RC ¦ PC ¦IEM¦XXX¦PM ¦UM ¦OM ¦ZM ¦DM ¦IM ¦ L--------+--+-----+-----+---+---+---+---+---+---+---+----
Регистр управления сопроцессоров 80287/80387 и сопроцессора, входящего в состав процессора 80486, имеет аналогичный формат, за исключением того, что бит 7 в нем не используется:
15-13 12 11-10 9-8 7-6 5 4 3 2 1 0 ---------T-T-----T-----T--------T---T---T---T---T---T---¬ ¦XXXXXXXX¦IC¦ RC ¦ PC ¦XXXXXXXX¦PM ¦UM ¦OM ¦ZM ¦DM ¦IM ¦ L--------+--+-----+-----+--------+---+---+---+---+---+----
Биты 0...5 - маски особых случаев. Особые случаи иногда возникают при выполнении команд сопроцессора, например, при делении на нуль, переполнении и т.д. Если все биты масок особых случаев равны нулю, особый случай вызывает прерывание центрального процессора INT 10h (обратите внимание, что это прерывание используется BIOS для работы с дисплейным адаптером). Если же особые случаи замаскированы установкой соответствующих битов в единичное состояние, прерывание не вырабатывается, а в качестве результата возвращается особое значение - бесконечность, нечисло и т.д.
Приведем таблицу масок особых случаев:
IM | маска недействительной операции; |
DM | маска денормализованного результата; |
ZM | маска деления на нуль; |
OM | маска переполнения; |
UM | маска антипереполнения; |
PM | маска особого случая при неточном результате; |
IEM | маскирование одновременно всех особых случаев вне зависимости от установки битов 0...5 регистра управления, этот бит действителен только для сопроцессора 8087 |
Подробнее особые случаи и условия их возникновения будут описаны позже, когда мы займемся ошибками при выполнении команд в сопроцессоре.
Поле PC управляет точностью вычислений в сопроцессоре:
00 | использование расширенной точности, этот режим устанавливается при инициализации сопроцессора; |
10 | округление результата до двойной точности; |
00 | округление результата до одинарной точности. |
Искусственное ухудшение точности вычислений не приводит к ускорению работы программы. Режимы с пониженной точностью предназначены для эмуляции процессоров, использующих двойную и одинарную точность, соответственно.
Двух битовое поле RC задает режим округления при выполнении операций с вещественными числами:
00 | округление к ближайшему числу, этот режим устанавливается при инициализации сопроцессора; |
01 | округление в направлении к отрицательной бесконечности; |
10 | округление в направлении к положительной бесконечности; |
11 | округление в направлении к нулю. |
Округление в направлении к ближайшему числу.
-беск.<-o-<<-x-------o---- 0 -----o-----x->>-o---->+беск.
Округление в направлении к отрицательной бесконечности.
-беск.<-o-<<-x-------o---- 0 -----o--<<---x-o---->+беск.
Округление в направлении к положительной бесконечности.
-беск.<-o-x-->>-----o---- 0 -----o------x->>-o---->+беск.
Округление в направлении к нулю.
-беск.<-o-x-->>-----o---- 0 -----o--<<----x-o---->+беск.
Для наибольшего уменьшения ошибок вычислений наиболее целесообразно использовать режим округления в направлении к ближайшему числу. Режим округления в направлении к нулю используется при моделировании целочисленной арифметики.
Остальные два режима округления используют в интервальной арифметике. Для получения наиболее точного результата каждая команда (операция) выполняется два раза - первый раз с округлением в направлении к отрицательной бесконечности, второй раз - в направлении к положительной бесконечности. Точный результат лежит между полученными значениями. Заметьте, что здесь речь идет только об отелных операциях, но не о том, чтобы выполнить всю программу вычислений вначале с одним режимом округления, а затем с другим.
Поле IC регистра управления предназначен для управления бесконечностью:
0 проективный режим; 1 афинный режим.
В проективном режиме существует только одна бесконечность, она не имеет знака:
Бесконечность -----------------> <-----------------¬ ¦ ¦ ¦ ¦ ¦ ¦ L---------------- 0 ------------------
В афинном режиме имеется две бесконечности - положительная и отрицательная:
-бесконечность + бесконечность <-------------------------- 0 ---------------------------->
Афинный режим допускает выполнение многих операций с бесконечностями - сложение, умножение и т.д.