Электронная лаборатория на IBM PC



         

6.4. Резонансные цепи


Явление, при котором индуктивное и емкостное сопротивления в RLC-цепи равны, называется резонансом.

Различают последовательный (для последовательной RLC-цепи) и параллельный (для параллельной RLC-цепи) резонанс. Последовательную RLC-цепь чаще всего называют последовательным колебательным контуром, а параллельную RLC-цепь — параллельным колебательным контуром. В случае малых потерь (сопротивление R пренебрежимо мало) для обоих контуров резонанс наступает при условии

2-6-41.jpg

откуда получается широко известное выражение для резонансной частоты;

2-6-42.jpg
(6.4).

При последовательном резонансе (для последовательного контура) ток в цепи на рис. 6.5 определяется только сопротивлением R и совпадает по фазе с напряжением входного сигнала. При этом ток в цепи равен I„=U„/R и напряжения на индуктивности LT¦ и конденсаторе Uc

2-6-43.jpg
(6.5)

могут превышать напряжение входного сигнала в Q раз. Безразмерная величина

2-6-44.jpg
(6.6)

называемая добротностью, показывает, во сколько раз напряжение на индуктивности или емкости при резонансе превышает входное напряжение контура. На практике используется также величина, обратная добротности, которая называется коэффициентом затухания d=l/Q. Из (6.6) видно, что добротность контура возрастает с увеличением индуктивности L и уменьшением сопротивления потерь R и емкости С контура.

С учетом (6.4) выражение (6.6) может быть записано также в виде Q=W/R, где

2-6-45.jpg
(6.7)

Параметр W имеет размерность сопротивления и называется характеристическим сопротивлением контура.

Амплитудно-частотная характеристика резонансной цепи определяется как отношение тока, определяемого выражением (6.2), к току при резонансе, т.е.

2-6-46.jpg
(6.8)

В радиотехнике зависимость, описываемую выражением (6.8), обычно называют резонансной кривой и для малых отклонений частоты относительно резонансной частоты используют для нее приближенное выражение:

2-6-47.jpg
(6.9)

где

2-6-48.jpg
— расстройка по частоте.

Приведем пример расчета последовательной RLC-цепи (рис. 6.10). Согласно (6.4) при указанных на схеме значениях индуктивности и емкости




Содержание  Назад  Вперед