Электронная лаборатория на IBM PC



         

14.1. Модели для решения дифференциальных уравнений


Поскольку моделирование автоматических систем управления чаще всего сводится к решению дифференциальных уравнений, то в первую очередь рассмотрим устройства для их решения, которые в аналоговой вычислительной технике часто называют дифференциальными анализаторами.

В дифференциальных анализаторах реализуются два метода интегрирования дифференциальных уравнений. Один из них основан на повышении порядка производных искомой функции, а другой — на его понижении [29, 61]. Рассмотрим их на примере линейного дифференциального уравнения с постоянными коэффициентами третьего порядка

PACK5391.jpg
(14.1)

Для интегрирования дифференциального уравнения методом повышения порядка производных его необходимо решить относительно производной неизвестной функции Z низшего порядка. Приняв Z за производную нулевого порядка, из (14.1) получим

PACK5392.jpg
(14.2)

Структурная схема модели для решения уравнения (14.2) показана на рис. 14.1. Из формулы (14.2) следует, что для получения переменной Z необходимы следующие вычислительные блоки: 4-входовой сумматор (блок S на рис. 14.1), три дифференциатора (блоки D) и три умножителя (блоки X) для умножения на коэффициенты AL Выходной сигнал сумматора, обозначенный на схеме рис. 14.1 буквой Z, будет искомым решением уравнения (14.1).

Отметим, что метод повышения порядка производных почти не применяется на практике, так как дифференцирующие блоки весьма чувствительны к помехам (см. гл. 10), которые могут стать источником ошибок. Например, если в электронной вычислительной машине возмущение f(t) подается на суммирующий блок от функционального потенциометра, то фактически оно будет изменяться не плавно, а сту-пенчато при переходе подвижного контакта от одного витка потенциометра к другому, что будет регистрироваться дифференцирующими блоками в виде значительных всплесков напряжения. Значительные ошибки в определении мгновенного значения производной имеют место и в точках перехода от одной аппроксимирующей прямой к другой, при вводе возмущения от диодного функционального аппроксиматора и т.п. Метод повышения порядка производных используется только в тех случаях, когда без него нельзя обойтись, например, в специализированных вычислительных машинах. Однако в этом случае используются специальные дифференцирующие устройства, вырабатывающие не мгновенные, а усредненные (сглаженные) значения производных.

PACK5393.jpg




Содержание  Назад  Вперед